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Abstract—This paper is devoted to the problem of solving a system of nonlinear equations with
an arbitrary but continuous vector function on the left-hand side. By assumption, the values of
its components are the only a priori information available about this function. An approximate
solution of the system is determined using some iterative method with parameters, and the
qualitative properties of the method are assessed in terms of a quadratic residual functional.
We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC)
experiments, an exponential utility function, and a payoff function that implements Bellman’s
optimality principle. A theorem on the strict monotonic decrease of the residual functional is
proven.
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1. INTRODUCTION

The vast majority of applied problems lead to the need to solve nonlinear equations. Parame-
terized iterative methods are a classical tool yielding approximate solutions of nonlinear equations
under definite conditions [1–4]. These conditions are certain properties of the functions (convex-
ity, concavity, differentiability, etc.) included in the equations and interval sufficient parametric
conditions ensuring the convergence of the corresponding iterative method.

The increasing complexity of functions narrows the set of their classes where such properties can
be verified and the verification results can be used in suitable iterative methods. On the other hand,
interval conditions on the parameters of iterative methods significantly depend on the properties
of functions that are generally unverifiable.

To find a way out of this situation, the ideas of reinforcement learning can be applied to the
iterative computational process to determine the values of its parameters using statistical Monte
Carlo (MC) experiments and a game-theoretic mathematical model [5, 6]. The essence of this
branch of machine learning is to train an object (model, algorithm, etc.) by interacting not with
a “teacher” (supervised learning) but with an “environment,” using the trial-and-error method,
followed by rewards or penalties for its results.

This approach was employed in clustering and recognition problems, apparently because of
the ability to calculate the so-called feature characteristics in the form of “distances” between
objects. The distance matrix was adopted to arrange some “rewards” or “penalties” when tuning
the algorithm parameters. The algorithms considered were neural networks [7] and game-theoretic
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models implementing the principle of competition between neural network nodes [8]. In particular,
the advantage was given to the nodes with the minimum distance between objects at each step of
the algorithm.

Subsequently, reinforcement learning based on the automata models of interaction between
an object (agent) and an environment was simulated in game-theoretic terms (strategies, utility
functions, and payoffs) and was actively developed [9]. Many algorithms appeared, differing in
the models and amounts of a priori information about the environment, algorithms for choosing
strategies, and procedures for designing utility functions [10–13].

An important component of reinforcement learning procedures is MC experiments intended to
simulate agent’s strategies [14]. They are used to average a fixed number of current rewards with
their discounting. The resulting function depends on the state of the environment and the agent’s
strategy; it is taken as a utility function (an analog of the objective function in supervised learning
procedures) and is sequentially maximized during the learning process [15, 16] using Bellman’s
optimality principle [17] in combination with stochastic approximation [18].

This paper considers the problem of numerically solving a system of nonlinear equations us-
ing a parameterized iterative procedure whose convergence depends on the parameter values. To
determine these values, we develop a reinforcement learning procedure based on a game-theoretic
model.

The problem addressed below was actively discussed and shaped under the influence of Boris
Polyak. The author was fortunate to work and be friends with him for many years. The blessed
memory of Boris will always be the author’s compass in life.

2. PROBLEM STATEMENT

Consider the nonlinear equation

f(x) = 1, (f ,x,1) ∈ Rn. (1)

By assumption, the only a priori information available about the function f is the values of its
components fi(x

(k)), i = 1, n; k = 1, . . . .

We introduce the residual functional

J(x) = ‖f(x)− 1‖2 > 0. (2)

The absolute minimum of this functional is zero. In the general case, it is not unique, i.e., there

exists a finite set X = {x
(1)
∗ , . . . ,x

(r)
∗ } of points at which the residual functional vanishes. In this

situation, any solution from the set X will be considered suitable.

An approximate solution of this equation is determined using an iterative Markov-type proce-
dure. In this procedure, the approximate solution x

(p+1) at step (p+1) is set equal to the value of
the operator B[x(p), a(p)] of the iterative procedure at step p, depending on the values of the com-
ponents of the function f(x(p)) and the parameter vector a(p) ∈ A ⊂ Rr that adjusts the qualitative
properties of the iterative process:

x
(p+1) = B[f(x(p)),a(p)]. (3)

Qualitative properties often include convergence, the rate of convergence, and accuracy. The condi-
tions for ensuring these properties are formulated in terms of the vector a and interval inequalities
depending on the properties of the operator B and those of the function f(x).

However, the function f(x) may have an arbitrary structure, making it impossible to postulate
or reveal its properties. As a result, these inequalities become analytically unverifiable.
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To find a way out of this situation, we utilize the ideas of reinforcement, which are actively used
in various implementations in modern machine learning procedures. In this case, reinforcement is
intended to determine, at each step of the iterative procedure, a suitable parameter vector a via
an appropriate self-learning procedure.

We propose a game-theoretic model to calculate the suitable parameters a of the iterative pro-
cedure (3). This model operates in the intervals between steps p and (p + 1) and simulates the
behavior of an agent, i.e., a strategy for varying the parameters a depending on the response quality
of an environment. The quality is characterized by a conditional payoff, a function that depends
on the values of the residual functional and its decrement.

3. STRUCTURE OF THE REINFORCEMENT PROCEDURE

Consider the original problem (1) and find its solution by minimizing the residual functional

J(x) ⇒ min, x ∈ Rn. (4)

In some applications, it may be useful to transform problem (1). We introduce the new variables

zi =
1

1 + exp(−bixi)
, xi =

1

bi
ln

zi

1− zi
, i = 1, n.

Then problem (1) takes the form

J(z) = ‖Ψ(z)‖ ⇒ min, z ∈ Zn
+ = [0,1], Ψ(z) = f(z)− 1.

Problem (1) will be solved using the iterative procedure (3) under the assumption that the
parameters a are of interval type: a ∈ [a−,a+].

To determine the values of the components of the vector a in the procedure (3), we employ
the reinforcement technology, implementing it in the interval between steps p and (p + 1) of the
iterative procedure (3).

This technology is based on a game-theoretic model simulating the game of an agent with an
environment. The agent generates strategies (actions) that cause changes in the environment. The
magnitude of these changes is characterized by a utility function. The value of a payoff function
depends on the success of the agent’s strategy and its utility for the environment.

In the interval between the successive steps of the iterative procedure, a statistical simulation
is carried out via a given number M of MC experiments that simulate the agent’s strategies, i.e.,
the values of the components of the vector a(p,k), where k = 1,M .

As the agent’s actions, we will consider the vector

x
(p,k+1) = B[f(x(p,k)),a(p,k)], p = fix, k = 1,M. (5)

In this problem, the environment is the residual functional J(x |a). The MC-simulated actions
of the agent yield a sequence of M residuals,

J(x(p,1) |a(p,1)), . . . , J(x(p,M) |a(p,M)), (6)

and their decrements,

u(p,k)(a(p,k)) = J(x(p,k+1) |a(p,k))− J(x(p,k) |a(p,k−1)), k = 1,M. (7)

We introduce a utility function to characterize the response quality of the environment measured
by the decrement:

ϕ(u(p,k)(a(p,k))) = α exp[u(p,k)(a(p,k))]. (8)
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The quality of the agent’s strategies is assessed in terms of a payoff function that characterizes the
dependence of the agent’s payoff on its strategy. Choosing an appropriate payoff function seems to
be a creative task [2] involving some enumeration. Several general properties of this function can
be declared. It is a continuous and bounded function of the following form:

Q(a(p,k)) =

{

l(u(p,k)(a(p,k))) ϕ(u(p,k)(a(p,k))) 6 1

0 ϕ(u(p,k)(a(p,k))) > 1,
(9)

with the function

l(u(p,k)(a(p,k))) =

{

αϕ(u(p,k)(a(p,k))), 0 > u(p,k)(a(p,k)) > −U,

0, u(p,k)(a(p,k)) > 0,
(10)

where U is the limit of the decrement’s magnitude.

MC experiments yield a value set of the payoff functions. Following the concept of reinforcement
as applied to the iterative procedure (3), we determine the optimal value of the parameter a

(p+1)

by the rule
a
(p+1) = a

(p) + β arg max
16j6M

Q(a(p,kj)). (11)

If the agent chooses its strategy by the rule (11), in view of (9), we have

J(a(p+1)) < J(a(p)). (12)

Thus, the following result has been established for the properties of the residual sequence in the
iterative reinforcement procedure (8)–(11):

Theorem 1. Assume that:

a) The only a priori information available about the function f(x) in (1) is the values of its
components fi(x

(k)), i = 1, n.

b) The parameters of the iterative procedure a are chosen by the rule (12), (11), (9).

Then the iterative procedure (5) with reinforcement (8)–(11) generates a strictly monotonically
decreasing sequence of the residual functionals J(x) (4).

This theorem is not a convergence theorem for the iterative procedure in the mathematical sense
(convergence to one of the solutions). However, it is known that this solution corresponds to a zero
residual value. The theorem states that the sequence of residuals is strictly monotonically decreas-
ing. Since the calculation error is finite and can be specified, the final value of the parameters a

obtained when reaching this error can be taken as a solution.

4. CONCLUSIONS

This paper has been devoted to the problem of solving a system of nonlinear equations with
continuous functions on the left-hand sides. By assumption, the only a priori information available
about these functions is their values. To find solutions under such conditions, an iterative procedure
with parameters has been used: by tuning their values, it is possible to ensure the convergence of
the procedure in some sense.

It has been proposed to employ the ideas of reinforcement, which are being rather actively
developed in the theory and practice of machine learning. A self-learning procedure has been
designed in which a given number of MC experiments are carried out at each iteration step to
simulate the agent’s strategy (the values of the parameters of the iterative procedure). In this
procedure, the environment is the residual functional (5), and its response to the agent’s actions is
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the decrement (6). For an acceptable evolution of the iterative process, the decrement magnitude
must decrease. The decrement has been characterized by an exponential utility function so that
smaller decrement magnitudes correspond to larger values of the utility function. The agent’s
actions, i.e., the implemented parameters of the iterative procedure, have been assessed in terms
of a payoff function whose morphology considers both the state of the environment and the degree
of success of the agent’s actions.

It has been proven that, due to this self-learning procedure, the iterative reinforcement algorithm
generates a strictly monotonically decreasing sequence of residual functionals.
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